文章详情

真空断路器灭弧室内真空度与介电常数联系机理研究

日期:2024-05-16 16:18
浏览次数:270
摘要: 真空断路器灭弧室内真空度与介电常数联系机理研究 真空断路器是中压配电开关中的核心类型,真空灭弧室的真空度是影响其运行质量和寿命的重要因素。伴随着国家智能电网和基于可靠性检修体制的不断发展,在线监测灭弧室真空度成为智能断路器的新要求。基于耦合电容法的真空度在线监测方法是目前较为普遍使用的一种监测方法,利用耦合电容传感器探测灭弧室屏蔽罩电位Uc的变化实现,而感应电位Uc与灭弧室气压下灭弧介质的介电常数εr密切相关。本文对灭弧室气压值P(真空度)和εr的关系进行研究,并推导了干空气条件下...

真空断路器灭弧室内真空度与介电常数联系机理研究

真空断路器是中压配电开关中的核心类型,真空灭弧室的真空度是影响其运行质量和寿命的重要因素。伴随着国家智能电网和基于可靠性检修体制的不断发展,在线监测灭弧室真空度成为智能断路器的新要求。基于耦合电容法的真空度在线监测方法是目前较为普遍使用的一种监测方法,利用耦合电容传感器探测灭弧室屏蔽罩电位Uc的变化实现,而感应电位Uc与灭弧室气压下灭弧介质的介电常数εr密切相关。本文对灭弧室气压值P(真空度)和εr的关系进行研究,并推导了干空气条件下P 和εr的关系公式,为进一步分析真灭弧室真空度P 和屏蔽罩电位Uc 联系机理提供了研究基础,希望在理论上为进一步提高耦合电容传感器实用技术作支持。

研究背景

真空断路器近三十年来在我国中压开关产业不断发展,其应用范围日渐增大。并具有体小、重量轻、适用于频繁操作、灭弧不用检修的优点,在中压配电领域开关中占有主导地位。而一旦真空断路器发生故障极易引起十分严重的后果,不仅会引起自身设备损坏,更有可能引发大规模电网故障。真空断路器的故障往往是由于真空度降低所致,根据国家规定,真空灭弧室内的气体压强应低于1.33×10-2 Pa。由于真空灭弧室存在缓慢漏气现象,真空度会随着使用时间的延长呈现持续降低的趋势,当到达某一临界阈值时,就会引发**危险隐患。智能电网对真空度监测的要求逐渐提高,建议使用中的真空断路器采用实时监测,特别是对于35 kV、72.5 kV 及以上电压等级的真空断路器采用在线监测手段及时掌握灭弧室真空度状况更具实用价值和意义。

根据动态电荷分布和电容分压原理构建的耦合电容法具有探头结构简单,安装简便,抗干扰能力好等优点。其应用于实际检测的过程,往往需要先在实验室条件下标定某特定型号真空断路器的耦合电容传感器输出电位的变化趋势与其灭弧室真空度值相对应的关系曲线,再将该标定曲线应用于实际检测。此过程只能定性的利用真空度变化对屏蔽罩电位产生的影响,并且真空度劣化极限对应屏蔽罩电位的阈值需依靠经验数据来确定。为理清真空度与屏蔽罩电位的理论关系,使耦合电容法的实际应用过程不盲目。本文从电介质理论着力,通过介电常数的引入,希望能够将屏蔽罩电位随真空度的变化过程加以解释。

此外,以屏蔽罩电位为监测基础的灭弧室真空度的在线监测方法有许多,如:耦合电容法、旋转式电场探头检测法、光电变换法、比例差分探头检测法等。屏蔽罩电位成分分析的意义显得更加重要。真空断路器实际运行时,屏蔽罩上的电位成分较为复杂,既有直流分量又有交流分量。以下是前人通过实验总结出的真空度降低所导致的屏蔽罩电位的变化规律。

理论上,当真空灭弧室内真空度正常时,仅需几百伏的电压就可维持带电触头与中间屏蔽罩之间由场致发射引起的电子电流,屏蔽罩积累的负电荷使其负电位几乎达到电极电压峰值;当灭弧室内真空度劣化时,其气体密度变大,场致发射的电子被气体分子吸附后成为负离子,而负离子质量大,漂移速度慢,使得上述电子电流减小,屏蔽罩上由场致发射导致的电位降低。此外当真空灭弧室的运行电压和内部真空度处在正常范围时,灭弧室的屏蔽罩上不带有静电荷;当真空度下降导致绝缘强度降低时,触头与屏蔽罩之间会发生局部放电,使灭弧室的屏蔽罩上带有一定量的静电荷而形成直流电位。文献得到的结论认为:真空度下降到一定值时屏蔽罩上形成的交流电位幅值会发生变化,同时屏蔽罩上还会有直流电位生成。两种电位的变化都是由于在真空度下降时金属导杆和触头电极与屏蔽罩之间出现的汤森放电所导致,并且电位变化时对应的真空度相同。

本文就宏观电介质理论中影响电气绝缘材料性能的*主要参数相对介电常数进行讨论,并将讨论结果应用于电磁场数值计算。其中,感应电位的求解分析,对真空度在线监测理论的深入探讨有着十分重要的意义,深入探索灭弧室内真空度与屏蔽罩上感应电位的内在联系机理是本文的研究重点,该问题的解决不仅能够为耦合电容法提供理论依据,更能为诸多通过监测屏蔽罩上的感应电位实现真空断路器灭弧室真空度在线监测的方法提供理据上的理论支持。